Mixed Metal Complexes containing a Novel Chelating Sulphur Ligand

By A. R. DIAS and M. L. H. GREEN*

(Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR)

Summary Complexes $(\pi - C_5H_5)_2M(SR)_2$ are versatile ligands, forming a wide range of mixed metal complexes, some of which contain metal-metal bonds.

We have found that the bis-thiolato-complexes $(\pi - C_5H_5)_2$ $M(SR)_2$ I(I) (where M=Mo or W, and R=Me, Et, Bun, Allyl, or Ph) can act as chelating ligands forming crystalline, mixed-metal derivatives.

Whilst simple dithiol ligands do not form simple neutral derivatives with cobalt and iron dihalides, the complexes (I)

react readily with M'X₂ in anhydrous ethanol or tetrahydrofuran to give well characterised compounds of the stoicheiometry (II).

Examples of complexes (II) are, where M'=Fe, M=Mo, R=Me or Buⁿ and X=Cl; where M' = Co, M=Mo or W, R=Me or Buⁿ and X=Cl, Br, or SCN. The electronic spectra of the cobalt complexes (in dichloromethane solutions) indicates an essentially tetrahedral environment for the cobalt atom. The magnetic moment of the complex $(\pi$ -C₅H₅)₂Mo(SBuⁿ)₂CoBr₂over the range -185— 100° shows that the Curie Law is obeyed and gives $\mu_{293} = 4.35$ B.M. which is consistent with tetrahedral symmetry for the metal.

With the nickel sub-group metals two series of complexes are formed. These are binuclear species of the type (II) and the trinuclear species (III) which have been characterised as the Cl^- , Br^- , or the PF_6^- salts. Examples are, where M=Mo or W, R=Me, and M'=Pd or Pt for the dinuclear derivatives, and M'=Ni, Pd, or Pt for the trinuclear derivatives (III).

The reaction of the bis-thiolato-complexes (I) with the dimeric compounds $[RhCl(allyl)_2]_2$ and $[RhCl \ cyclo-octa-1,5-diene]_2$ gives the compounds (IV) and (V) respectively, which were characterised as the hexafluorophosphate salts and where M=Mo or W and R=Me.

Treatment of the complexes (I; R = Ph) with the Group VI hexacarbonyls gives crystalline compounds of stoicheiometry $(\pi^-C_5H_5)_2M(SR)_2M$ (CO)₃ (VI) where M=Mo or W and M'=Cr, Mo, or W. In the case of the complexes (VI) it appears that the complex (I) acts as a 6-electron ligand to the M'(CO)₃, presumably making use of the metal lone pair which is known to be available in the hydrides $(\pi^-C_5H_5)_2MH_2$ (M=Mo or W) ²

We thank N.A.T.O. for a research grant (to A.R.D.).

(Received, July 3rd, 1969; Com. 966.)

¹ M. L. H. Green and W. E. Lindsell, *J. Chem. Soc.* (A), 1967, 1455; and M. L. H. Green, M. Harriss and W. E. Lindsell, *ibid.*, 1969, 1453.

² M. L. H. Green, J. H. McCleverty, L. Pratt, and G. Wilkinson, J. Chem. Soc., 1961, 4854.